ֱ̽ of Cambridge - Siobhan Braybrook /taxonomy/people/siobhan-braybrook en Plants and patterning: how shapes are made /research/news/plants-and-patterning-how-shapes-are-made <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/news/news/130308-sunflower-siobhan-braybrook2.jpg?itok=QXiq4cBB" alt=" Scanning electron micrograph image of sunflower head developing." title=" Scanning electron micrograph image of sunflower head developing., Credit: Siobhan Braybrook " /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>Plants come in a fabulous array of shapes and sizes – from the tiny moss to the huge oak, from the tree-like structure to the delicate beauty of orchids.  All these living things start with a single cell.  How does this variety happen and what can we learn from it?</p>&#13; <p> ֱ̽tiny molecular mechanisms that determine the forms of plants lie in the cell wall, the strong fibrous material that surrounds each cell. ֱ̽cell wall and its shape give the plant its shape, allowing it to grow upwards, outwards and downwards in certain ways so that the resulting plant has the characteristic shape we associate with it, whether a twining vine or a giant Redwood.</p>&#13; <p>In a talk this Wednesday (13 March) evening, taking place as part of Cambridge Science Festival, molecular biologist Dr Siobhan Braybrook will explore how plants grow shapes by following an intricate process of patterning – as cells multiply and build the structures that make up their component parts.  In particular, she will look at the mathematics, physics, and chemistry that underlie this patterning, including the development of Fibonacci patterns in plants. </p>&#13; <p> ֱ̽lecture – titled ‘Biological design: the history and future of plant architecture’ - will give an overview of the fundamental processes of plant growth – and explore what we know, how we make use of this knowledge in agriculture, and what remains to be discovered.</p>&#13; <p>Dr Braybrook will then go on to discuss how mankind has domesticated crops – such as maize – to produce higher yields. Research can contribute to this process by providing a better understanding of plant shape and form as a basis for future crop breeding.</p>&#13; <p>Finally, she will look at the exciting possibilities that exist in developing new technologies – and smart materials in particular – that mimic the structures and mechanisms in plants. “ ֱ̽ways in which plants grow and make use of the environment around them with a minimal output of energy represent huge potential for exploring new technologies,” she said.</p>&#13; <p>“For example, we can look at how fig bark self-heals using latex, how wax coating on leaves protects them from water, how spores walk and jump, and how the hinges of the Venus fly trap are perfectly balanced to snap shut.”</p>&#13; <p>Dr Braybrook leads a research group at Cambridge ֱ̽’s Sainsbury Laboratory, an interdisciplinary research centre dedicated to understanding plant development. Its teams include physicists, computer scientists, geneticists, molecular biologists, mathematicians and biochemists.</p>&#13; <p>“We look at development in plants from a set of unique viewpoints to explore the new frontiers of plant science,” says Dr Braybrook. “My own area of expertise within this broad spectrum is to contribute to understanding the plant as a growing material, and I’m keen to put this across to the public in an accessible and entertaining way, while not forgetting that plants are vital to life.”</p>&#13; <p>‘Biological design: the history and future of plant architecture’ will take place at the Sainsbury Laboratory on Wednesday 13 March, 7.30-8.30pm. ֱ̽free talk is suitable for ages 16 and upwards. Advance booking essential: <a href="/sciencefestival/events/">http://www.cam.ac.uk/sciencefestival/events/</a><br />&#13;  </p>&#13; </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>A Cambridge Science Festival lecture on Wednesday (13 March 2013) will look at how plants grow through repeating patterns and discuss what we can learn from them in developing smart materials.  </p>&#13; </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">We can look at how fig bark self-heals using latex, how wax coating on leaves protects them from water, how spores walk and jump.</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Dr Siobhan Braybrook</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="/" target="_blank">Siobhan Braybrook </a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even"> Scanning electron micrograph image of sunflower head developing.</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p><a href="http://creativecommons.org/licenses/by-nc-sa/3.0/"><img alt="" src="/sites/www.cam.ac.uk/files/80x15.png" style="width: 80px; height: 15px" /></a></p>&#13; <p>This work is licensed under a <a href="http://creativecommons.org/licenses/by-nc-sa/3.0/">Creative Commons Licence</a>. If you use this content on your site please link back to this page.</p>&#13; </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div><div class="field field-name-field-related-links field-type-link-field field-label-above"><div class="field-label">Related Links:&nbsp;</div><div class="field-items"><div class="field-item even"><a href="https://www.festival.cam.ac.uk">Cambridge Science Festival</a></div></div></div> Mon, 11 Mar 2013 08:00:00 +0000 amb206 75982 at