探花直播 of Cambridge - Janet Kumita /taxonomy/people/janet-kumita en Ageing: can we add more life to our years? /stories/reverse-age-and-extend-health <div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Research advances at the 探花直播 of Cambridge mean that the eternal quest to reverse the march of time may soon become a reality.</p> </p></div></div></div> Wed, 20 Dec 2023 08:59:28 +0000 jg533 243861 at New headway in battle against neurodegenerative diseases /research/news/new-headway-in-battle-against-neurodegenerative-diseases <div class="field field-name-field-news-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img class="cam-scale-with-grid" src="/sites/default/files/styles/content-580x288/public/news/news/insidecreditandrewmasonflickr.jpg?itok=44ezek15" alt="Inside" title="Inside, Credit: Andrew Mason, via Flickr" /></div></div></div><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p>Two significant breakthroughs which could inform future treatments for neurodegenerative diseases such as Alzheimer鈥檚 and Parkinson鈥檚, have been announced by scientists.</p>&#13; <p> 探花直播research, published in two separate studies this week, advances understanding of the early development of such disorders and how they might be prevented 鈥 in particular by identifying the biological areas and processes that could be pinpointed by future drugs.</p>&#13; <p>Both sets of results have emerged from collaborations between the research groups led by Chris Dobson, Tuomas Knowles and Michele Vendruscolo at the 探花直播 of Cambridge, who focus on understanding protein 鈥渕isfolding鈥 diseases. These include Alzheimer鈥檚 and Parkinson鈥檚 diseases, as well as numerous others.</p>&#13; <p> 探花直播first study provides evidence that the early spread of the protein aggregates associated with Parkinson鈥檚 appears to happen at an accelerated rate in mildly acidic conditions. This suggests that particular compartments within brain cells, which are slightly more acidic than others, may turn out to be appropriate targets for future treatments fighting the disease.</p>&#13; <p>Meanwhile, researchers behind the second study appear to have identified a way in which the effectiveness of so-called molecular 鈥渃haperones鈥, responsible for limiting the damage caused by misfolded proteins, can be significantly enhanced.</p>&#13; <p> 探花直播papers appear in the latest issue of <a href="https://www.pnas.org/">Proceedings of the National Academy of Sciences of the USA</a>.</p>&#13; <p>As the term suggests, protein misfolding diseases stem from the fact that proteins, which need to fold into a particular shape to carry out their assigned function in the body, can sometimes misfold. In certain cases these misfolded proteins then clump together into fibre-like threads, called amyloid fibrils, potentially becoming toxic to other cells.</p>&#13; <p>How this formation begins at a molecular level is still not completely understood, but comprehending the process will be fundamental to the development of future therapies and is the subject of extensive current research.</p>&#13; <p> 探花直播first of the new studies builds on research published in 2013, which showed that in Alzheimer鈥檚 sufferers, the initial 鈥渘ucleation鈥 between proteins, which leads to amyloid formation, is followed by an amplification process called secondary nucleation. In these secondary events, the existing amyloid structures facilitate the formation of new aggregates, leading to their exponential increase. This process is likely to be at the heart of the development and spread of the disease in affected brains.</p>&#13; <p>Using the same techniques, the researchers behind the latest study identified a similar process that is relevant in the early stage development of Parkinson鈥檚 Disease. Their work focused on a protein called 伪-synuclein, which is associated with the disorder, and simulated different conditions in which this protein might misfold and form clumps.</p>&#13; <p>As with the previous study on Alzheimer鈥檚, the research identified that Parkinson鈥檚 could spread through a series of secondary nucleation events. In addition, however, it showed that in the case of 伪-synuclein, this happens at a highly accelerated rate only in solutions which are mildly acidic, with a pH below 5.8. 探花直播finding is important because certain sub-compartments within cells are more acidic than others, meaning that these may be particularly productive areas for future treatments to target.</p>&#13; <p>Dr Tuomas Knowles, from the Department of Chemistry and a Fellow of St John鈥檚 College, Cambridge, said: 鈥淭his tells us much more about the molecular mechanisms underlying protein aggregation in Parkinson鈥檚 and suggests that mildly acidic microenvironments within cells may enhance that process by several orders of magnitude. Not every sub-cellular compartment offers these conditions, so it takes us much closer to understanding how the disease might spread.鈥</p>&#13; <p> 探花直播second study meanwhile suggests a potential route to improving the effectiveness of a particular molecular 鈥渃haperone鈥 鈥 a loose classification for proteins which assist in the folding of others, thereby preventing them from causing damage when they misfold.<br /><br />&#13; 探花直播researchers focused on a chaperone called 伪2-macroglobulin (伪2M), which is found outside cells themselves. This is important because neurodegenerative diseases often stem from a process which begins with extracellular misfolding. 探花直播伪2M was tested on a substrate of the amyloid-beta peptide associated with Alzheimer鈥檚 Disease.</p>&#13; <p>Typically, the potency of 伪2M is limited. 探花直播new study, however, found that when it comes into contact with the oxidant hypochlorite 鈥 the same chemical found in household bleach, which also naturally occurs in our immune systems 鈥 its structure is modified in a manner that makes it into a much more dynamic defence.</p>&#13; <p>In their report, the researchers suggest that this increased effectiveness stems from the fact that 伪2M, which is usually found in a four-part, 鈥渢etrameric鈥 form, breaks down into 鈥渄imeric鈥, two-part forms when it comes into contact with hypochlorite.</p>&#13; <p> 探花直播chaperone usually plays its role by preventing a misfolded protein from interacting with the membranes that surround and protect cells. Once in its dimeric form, however, receptor binding sites within the 伪2M are exposed, leading to specific interactions with receptors on the cell itself. If the 伪2M has already interacted with misfolded proteins, this connection triggers the cell to break the potentially harmful protein down.</p>&#13; <p>鈥淚t鈥檚 almost like a warning flag for the cell, telling it that something is wrong,鈥 Dr Janet Kumita, from the Department of Chemistry, explained. 鈥淚t triggers the cell to react in a way that subjects the cargo of misfolded protein to a degradation pathway.鈥</p>&#13; <p>鈥淚ncreasing its potency in this way is an exciting prospect. If we could find a way of developing a drug that introduces the same structural alterations, we would have a therapeutic intervention capable of increasing this protective activity in patients with Alzheimer鈥檚 Disease.鈥</p>&#13; <p>Professor Christopher Dobson, from the 探花直播鈥檚 Department of Chemistry and Master of St John鈥檚 College, said: 鈥淭hese studies add very substantially to our detailed understanding of the molecular origins of neurodegenerative diseases, which are now becoming one of the greatest threats to healthcare in the modern world.鈥</p>&#13; <p>鈥淲e are beginning to understand exactly how a single, aberrant event can lead to the proliferation and spreading of toxic species throughout the brain, and the manner in which our sophisticated defence mechanisms do their best to suppress such phenomena. It will undoubtedly provide vital clues to the development in due course of new and effective drugs to combat these debilitating and increasingly common disorders.鈥</p>&#13; <p>For more information, please contact: Tom Kirk, St John鈥檚 College, 探花直播 of Cambridge. Tel: +44 (0)1223聽 768377, Mob: +44 (0)7764 161923; Email: <a href="mailto:tdk25@cam.ac.uk">tdk25@cam.ac.uk</a>聽</p>&#13; </div></div></div><div class="field field-name-field-content-summary field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><p><p>Conditions which may accelerate the spread of Parkinson鈥檚 disease, and a potential means of enhancing naturally-occurring defences against neurodegenerative disorders, have been identified in two new studies.</p>&#13; </p></div></div></div><div class="field field-name-field-content-quote field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even">We are beginning to understand exactly how a single, aberrant event can lead to the proliferation and spreading of toxic species throughout the brain, and the manner in which our sophisticated defence mechanisms do their best to suppress such phenomena</div></div></div><div class="field field-name-field-content-quote-name field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Chris Dobson</div></div></div><div class="field field-name-field-image-credit field-type-link-field field-label-hidden"><div class="field-items"><div class="field-item even"><a href="https://www.flickr.com/photos/a_mason/4006709/" target="_blank">Andrew Mason, via Flickr</a></div></div></div><div class="field field-name-field-image-desctiprion field-type-text field-label-hidden"><div class="field-items"><div class="field-item even">Inside</div></div></div><div class="field field-name-field-cc-attribute-text field-type-text-long field-label-hidden"><div class="field-items"><div class="field-item even"><p> 探花直播text in this work is licensed under a <a href="http://creativecommons.org/licenses/by-nc-sa/3.0/">Creative Commons Licence</a>. If you use this content on your site please link back to this page. For image rights, please see the credits associated with each individual image.</p>&#13; <p><a href="http://creativecommons.org/licenses/by-nc-sa/3.0/"><img alt="" src="/sites/www.cam.ac.uk/files/80x15.png" style="width: 80px; height: 15px;" /></a></p>&#13; </div></div></div><div class="field field-name-field-show-cc-text field-type-list-boolean field-label-hidden"><div class="field-items"><div class="field-item even">Yes</div></div></div><div class="field field-name-field-license-type field-type-taxonomy-term-reference field-label-above"><div class="field-label">Licence type:&nbsp;</div><div class="field-items"><div class="field-item even"><a href="/taxonomy/imagecredit/attribution">Attribution</a></div></div></div> Thu, 15 May 2014 07:19:20 +0000 tdk25 127162 at